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Short-time dynamics for the spin-% Blume-Capel model
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We employed Monte Carlo simulations and short-time dynamic scaling to determine the static and dynamic
critical exponents for the generalized two-dimensional Blume-Capel model of%ere showed that the
critical behavior at the second-order phase-transition line between the paramagnetic and ferromagnetic phases
is in the same universality class of the two-dimensional Ising model. However, at the double critical end point,
which is present in the phase diagram of the model, the critical expghessociated to the order parameter,
is different from that of the Ising model.
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I. INTRODUCTION have been used to investigate the short-time critical dynam-
Besides the usual critical phenomena, certain physicdfS Of several spin systeni8—7]. Once we know the location

systems display other very interesting multicritical behavior.0f the critical point of the system, we are able to determine
These studies have been carried out both theoretically arlff Critical properties. For this end, we need to prepare the
experimentally in the past few years. Recently, Plascak angYStém in a state in which the spatial and temporal correla-
Landau[1] determined the phase diagram of the generalize(ﬁ'on Iengths_ are near zero, and to put it at its critical point.
Blume-Capel model of spié; in two dimensions. They paid Thus by using the apropriate scaling relat|on_s for the mo-
particular attention to the behavior at the double critical end"ents of the order parameter, we can determine the critical
point (DCE) of this model. For a nonzero value of the crystal exponents. ,
field A, the model presents four possible ferromagnetic or- 'In this study, we prepared our system W't.h a zero corre-
dered phases: two symmetrical phases where the spins APE'On length at zero temperature, because th|s_ is the simplest
predominantly in the state%?’i(Fﬂ andF_; phasey and two way to determine the critical expoents, and it was already

. ) o F used with success in different spin problef89]. Then, this
other symmetrical phases, with the SpIns n the staﬁe(§¢l method was used to find the critical exponents along the
andF_; phases In aT-A plane, there is a line of four coex-

. ; second-order transition line for different values of the crystal
istent ordered phaseB,; andF.4, extending fromr=0 and - . )
A=dJ (d is the spatial dimension anilis the exchange in- field of the generalized Blume-Capel model, and at the

i " to the double critical end poifvhere t i double critical end point of the model. In the next section, we
eractior) up to € doubie critical en poinvhere two criti- present the model and the finite-size scaling relations used
cal phases coexisE,;=F,; andF_3=F_;), for T=T, and

A=A for the short-time dynamics. In Sec. Ill, we show our Monte
i . . . . Carlo simulations and the calculation of the related critical
In Ref. [1], Monte Carlo simulations with the histogram exponents and, finally, in Sec. IV, we present our conclu-
reweighting and finite-size scaling techniques have beegions ' ' Y
used to locate the first-order transition line and the precise '
position of the double critical end point. Then, from the de-
pendence of the double critical end point temperaturéd.on Il. THE MODEL AND SHORT-TIME EQUATIONS
(the linear dimension of the square laticéhey found the
values for the critical exponent of the DCE. They con- . - .- 3 .3 ,1
cluded that the critical behavior at this multicritical point ﬂ;nn?irrtilgir;sr{ g: ?ﬁéngq;ééw::rfist\?;ﬁt?e?‘r@a;iz’ t3- The
belongs to the same universality class of the corresponding
two-dimensional Ising model. N N
In this work, we revisited this problem with the idea to H=-JD, oioj + A, 0.i2_ HY, aj, (1)
determine other critical exponents associated with the DCE, @i.j) i=1 i=1
besides the exponentfound by these authors. We employed \yare 3> 0 is the ferromagnetic exchange interactianis

in our analysis Monte Carlo simulations along with the short-%{l1e crystal-field anisotropyd is a uniform external field, and

time dynamics. As is well known, Janssen, Schaub, ang| is the total number of spins. The phase diagram of this
Schmittmann{2], through renormalization-group arguments, ., J4el was studied in detail by Plascak and Landay
showed that the universal scaling behavior, observed in thfhrough Monte Carlo simulations. At thé=0 plane, they

long-time relaxation behavior of the dynamic evolution of t 4" the second-ordex-transition line and the first-order

the systems, is already present at the short times just after the,eistence line that ends at a double critical end point. At
start of the relaxation. Since then, numerical S|mulat|on§hiS point, two critical phases coexist.

We consider a generalized Blume-Capel model, in two

The static and dynamic critical exponents can be deter-
mined from the dynamic relaxation equations when the sys-
*Email address: wagner@fisica.ufsc.br tem starts from a completely ordered state, uncorrelated
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spins, with the order parameter assuming its maximunsites, with values of. ranging fromL=8 up toL=128. We
value. For the system studied, we employed two differenhave employed the heat bath algorithm to take into account
definitions for the order parameter, depending on which tranthe transition rate between states. We have started the simu-
sition we are looking for. Along tha line, the order param- lations with a completely ordered state, where all spins as-
eter is the total magnetization of the system, which goes tgume their maximum value, i.er,:%. We have investigated
zero at the points of this line. On the other hand, for thetwo different types of critical points. First, we considered the
double critical end poin(DCE), we define the order param- critical behavior along thé line, where the system passes
eter as being the differenga(t)=M(t)-My, whereM(t) is  continuously from an ordered ferromagnetic to a paramag-
the total magnetization at tinteand My is the magnetization netic phase. The second case we considered is related to the
at the DCE. Also, this latter order parameter becomes zero atitical behavior at the double critical end point: at this point,
the DCE. We assume that near a point atxhiene, or near  two critical phases coexisk,;=F,; andF_s;=F_;. We have

the DCE, thekth moment of the corresponding order param-seen that for any critical point considered it is sufficient to
eterm(t) scales a$8] consider the first 300 Monte Carlo steddCS; 1IMCS=2

trials to change the value of the spins in the laititee cal-

mi(t, 7,L) = b m (b7, b b, 2 culate the critical exponents of interest. In order to get a
wheret is the time, is the reduced temperature good statistics, we had to consider a large number of inde-
pendent samples to calculate tra(t)) and its second mo-
= T-T¢ 3) ment(m?(t)) at the critical points. With the values ai(t))
T and (m@(t)), we can determine the second-order cumulant,

L is a linear dimension of the system, abdis a spatial (U,(1)), and the logarithmic derivative of the order parameter

rescaling factor8 and v are the well known static exponents With respect tor, [aInm(t, )/ d7]| =o-
andz is the dynamic critical exponent. This scaling relation
is assumed to be valid in the macroscopic short-time regime.
For example, folk=1 and forb=t'? we obtain the scaling
law to the order parameter, In order to determine the values of the static and dynamic
critical exponents at the line, where the system passes con-
m(t) = 7" m(1,t%7), ) tinuously I?rom the ordered ferromagneti}é phaspe to a para-

where it is assumed thétis very large. Ifr=0, this scaling magnetic phase, we have prepared the system in a com-

A. The second-order transition line

relation can be written as pletely ordered state, with all the spins assuming their
" maximum value,ai:+§. Then, the system is left to evolve
m~t, 5 in time at a chosen point of the line, with coordinatesT,

with ¢,=B/vz. In Eq. (4), taking the derivative ofn with ~ @nd Ac. In order to get reliable results, the averages were

respect tor and evaluating it ar=0, we obtain the logarith- €stimated by using % 10* samples for the lattices with the
mic derivative of the order parameter, lattice size in the range 8L <32, and 16 samples for 48

<L =<128. For the value\.=0, the critical temperaturé&,
1% ©6) =3.287 947) was determined very accuratel§0] by em-
=0 ’ ploying a hybrid algorithm to the spii}-two-dimensional
Ising model. We show in the next three figures the results we
. . have obtained for this critical point. Figure 1 displays the
Once the order parameter assumes its maximum value

_ . . i g-log plot of them(t) as a function oft for L=128. The
t=0, we can alsq obtain the time-dependent second Ord%rgure also exhibits the best fit to the data points. From the
cumulantU,(t) defined by

slope of this straight line, we found the following ratio for

dlnm(t,7)
T

wherec,=1/vz.

m@ the critical exponents3/vz=0.059 725). Similarly, in Fig.
Ua(t) = (?)2 -1 @) 2, we show the log-log plot of the second-order Binder cu-

mulant U,(t) as a function oft, giving the valued/z
At the initial times it reduces to =0.9192) for the slope of this curve. We found the value
U,(t) ~ 12, (8) (v2)71=0.49547) for the slope of the curve presented in Fig.

3, which is the log-log plot of the logarithmic derivative mof
where c3=d/z, d is the spatial dimension of the system. versust. From these ratios, we can easily determine the val-
Therefore, from the short-time dynamic evolution of the or-ues of the critical exponentg=2.1764), »=0.9283), and
der parameter and its second moment, we can obtain the=0.12067). We have also considered other points onxhe
static critical exponentg and » and the dynamic critical |ine for which A, is different from zero. We have employed
exponentz along the\ line and at the multicritical point the same procedure described above to find the critical ex-
DCE. ponents. In Fig. 4, we summarize the results for the three
considered critical exponenf3 v, andz. In this figure, the
dotted lines give the exact values for the static expongnts

We have performed Monte Carlo simulations, with peri-andv for the two-dimensional Ising model, and the one well
odic boundary conditions, on a square lattice WNkL?  accepted estimafd 1] for the dynamical exponemt Despite

Ill. SIMULATIONS AND RESULTS
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FIG. 3. Log-log plot ofd In m(t, 7)/d7 as a function of time, at
FIG. 1. Log-log plot of the order parametext) vs timet, atthe  theX\ line, for T,=3.287 947), A.=0, andL=128. The straight line
X line, for T,=3.287 947), A.=0, andL=128. The error bars found is the best fit to the data, which givész)"1=0.49547).
in the simulations are less than the size of the points. The straight
line is the best fit to the data, which givgg1z=0.059 725) (the B. Double critical end point

error is that obtained from the fitting
Now we turn our attention to the double critical end point

. . . found in the phase diagram of the s@nBlume-Capel
the Izrger d(_ek\Jneguon fr:orr; the thtJFEd rlllnes fADO'hWh'Ch model. The coordinates of this point was determined very
can be ascribed to the fact thg{ in these cases have not ecisely by Plascak and Land4di through Monte Carlo

been so accurately determined as for0, the critical be- g jations viameTroPoLIs sequential single spin-flip up-
havior along thex line of this model seems to be the same as

that of the Ising model in two dimensions.
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FIG. 4. The exponentg, v, and 8 as a function of the crystal
FIG. 2. Log-log plot of the second-order Binder cumuleitt) field parameter, at tha line for L=128. The dotted lines mark
as a function of time, at the\ line, for T,=3.287 947), A,=0, and the exact values of the exponentsand B of the two-dimensional
L=128. The straight line is the best fit to the data, which giveslsing model, while the dotted line associated watfs the value of
d/z=0.9192). Ref. [11].
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FIG. 5. Log-log plot of the order parametext) vs timet, at the
double critical end point, whose coordinates dgg-0.593 747)
andA4=1.986 475), for L=64. The straight line is the best fit to the
data, which gives3/vz=0.03421).

FIG. 7. Log-log plot of thedInm(t,7)/dr vs timet, at the
double critical end point, fok =64. The straight line is the best fit
to the data, which giveérz)1=0.5283).

dates, by employing a histogram reweighting and finite-sizeespectively. For this point, the order parametermié)
scaling techniques. In their analyses, they used square lat-M(t)—My, whereM(t) is the total magnetization at tinte
tices with lattice sizes ranging from=12 to L=64. They and My is the magnetization at the DCE. In this way, this
found the following values for the coordinates of the doubleorder parameter becomes zero at the DCE. We found the
critical end point:T4=0.593 747) andA4=1.986 475). The  following slopes for these straight lines: far=48, 8/ vz
values of the magnetization they found for the two largest=0.03381), d/z=0.9083), and (¥2)™'=0.55745). On the
lattices are forL=48, M4=0.6285 and forL=64, My  other hand, fol.=64 the slopes ar@/vz=0.03421), d/z
=0.6313. We show in Figs. 5, 6, and 7, the log-log plots 0f=0.9222), and (v2)"1=0.5283). Although we do not have
m(t), U,(t) and the logarithmic derivative af(t) versust,  precise values of the magnetization for larger lattices, it is
easy to see that the rati®y vz is almost insensitive to thelat-
tice sizes considered. For instance, the critical exponents for
L=64 arez=2.1695), »=0.8738), and 8=0.0651). By
considering only these two lattice sizds=48 andL=64),

and extrapolating the corresponding critical exponents to an
infinite lattice, we see that=1.05, which is near the value
found by Plascak and Landdd]. However, the value we
estimated forB is 0.077, which is very different from the
expected 0.125 for the two-dimensional Ising model. Based
on these estimates, we believe that the double critical end
point does not belong to the same universality class of the
two-dimensional Ising model.

0.0010

u,(t)

IV. CONCLUSIONS

In this study, we investigated the critical behavior of the
generalized two-dimensional Blume-Capel model of S%Jin-

i ) PPN ) The critical exponents were determined by the short-time
10 100 dynamic scaling and Monte Carlo simulations. We have
t(in MCS) found that, along the continuous transition line separating the
ferromagnetic and paramagnetic phases, the critical expo-

FIG. 6. Log-log plot of the second-order Binder cumulaigtt)y ~ nents are in the same universality class of the two-
vs timet, at the double critical end point, far=64. The straight dimensional Ising model. On the other hand, at the double
line is the best fit to the data, which give$z=0.9222). critical end point, where two critical phases coexist, although

0.0001
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the static exponent we obtain is almost the same as deter-exponentz presents essentially the same value at both\the

mined previously{1], we estimated for the exponegf as- line and at the double critical end point.
sociated with the order parameter, the vgi#0.077, which
is quite different from the exact 0.125 of the two- ACKNOWLEDGMENTS

dimensional Ising model. Then, we think the behavior of the
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universality class of the two-dimensional Ising model. Thatand FUNCITEC. We are also very grateful to Dr. Jodo An-
is, while at the\ line the critical behavior is the same as the tonio Plascak for giving us the values of the magnetization at
corresponding Ising model, it changes drastically at thehe double critical end point and for the enlightening discus-
double critical end point. Nevertheless, the dynamic criticalsions.

[1] J. A. Plascak and D. P. Landau, Phys. Rev6E 015103R) [6] B. Zheng, Phys. Lett. A277, 257 (2000.

(2003. [7]1 R. da Silva, N. A. Alves, and J. R. Drugowich de Felicio,
[2] H. K. Janssen, B. Schaub, and B. Schmittmann, Z. Phys. B:  phys. Rev. E66, 026130(2002.

Condens. Matter73, 539 (1989. [8] A. Jaster, J. Mainville, L. Schiilke, and B. Zheng, J. Phys. A
[3] Z. B. Li, L. Schulke and B. Zheng, Phys. Rev. Le?4, 3396 32, 1395(1999.

(1995 ’

[9] M. Santos and W. Figueiredo, Phys. Rev6g, 1799(2000.

4] Z. Li, L. Schilk B. Zh Phys. Rev. 294
[ ](199;’3 Schulke, and eng, Phys. Rev. &3, 2940 [10] J. A. Plascak, Alan M. Ferrenberg, and D. P. Landau, Phys.
[5] K. Okano, L. Schiilke, K. Yamagishi, and B. Zheng, Nucl. Rev. E 65, 06670_2(2003'

Phys. B 485, 727 (1997). [11] D. Stauffer, Physica A244, 344(1997).

056109-5



