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We employed Monte Carlo simulations and short-time dynamic scaling to determine the static and dynamic
critical exponents for the generalized two-dimensional Blume-Capel model of spin-3

2. We showed that the
critical behavior at the second-order phase-transition line between the paramagnetic and ferromagnetic phases
is in the same universality class of the two-dimensional Ising model. However, at the double critical end point,
which is present in the phase diagram of the model, the critical exponentb, associated to the order parameter,
is different from that of the Ising model.
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I. INTRODUCTION

Besides the usual critical phenomena, certain physical
systems display other very interesting multicritical behavior.
These studies have been carried out both theoretically and
experimentally in the past few years. Recently, Plascak and
Landau[1] determined the phase diagram of the generalized
Blume-Capel model of spin-3

2, in two dimensions. They paid
particular attention to the behavior at the double critical end
point (DCE) of this model. For a nonzero value of the crystal
field D, the model presents four possible ferromagnetic or-
dered phases: two symmetrical phases where the spins are
predominantly in the states ±3

2 (F+3 andF−3 phases), and two
other symmetrical phases, with the spins in the states ±1

2 (F+1
andF−1 phases). In a T-D plane, there is a line of four coex-
istent ordered phases,F±3 andF±1, extending fromT=0 and
D=dJ (d is the spatial dimension andJ is the exchange in-
teraction) up to the double critical end point(where two criti-
cal phases coexist:F+3;F+1 and F−3;F−1), for T=Td and
D=Dd.

In Ref. [1], Monte Carlo simulations with the histogram
reweighting and finite-size scaling techniques have been
used to locate the first-order transition line and the precise
position of the double critical end point. Then, from the de-
pendence of the double critical end point temperature onL
(the linear dimension of the square lattice), they found the
values for the critical exponentn of the DCE. They con-
cluded that the critical behavior at this multicritical point
belongs to the same universality class of the corresponding
two-dimensional Ising model.

In this work, we revisited this problem with the idea to
determine other critical exponents associated with the DCE,
besides the exponentn found by these authors. We employed
in our analysis Monte Carlo simulations along with the short-
time dynamics. As is well known, Janssen, Schaub, and
Schmittmann[2], through renormalization-group arguments,
showed that the universal scaling behavior, observed in the
long-time relaxation behavior of the dynamic evolution of
the systems, is already present at the short times just after the
start of the relaxation. Since then, numerical simulations

have been used to investigate the short-time critical dynam-
ics of several spin systems[3–7]. Once we know the location
of the critical point of the system, we are able to determine
its critical properties. For this end, we need to prepare the
system in a state in which the spatial and temporal correla-
tion lengths are near zero, and to put it at its critical point.
Thus by using the apropriate scaling relations for the mo-
ments of the order parameter, we can determine the critical
exponents.

In this study, we prepared our system with a zero corre-
lation length at zero temperature, because this is the simplest
way to determine the critical expoents, and it was already
used with success in different spin problems[8,9]. Then, this
method was used to find the critical exponents along the
second-order transition line for different values of the crystal
field of the generalized Blume-Capel model, and at the
double critical end point of the model. In the next section, we
present the model and the finite-size scaling relations used
for the short-time dynamics. In Sec. III, we show our Monte
Carlo simulations and the calculation of the related critical
exponents and, finally, in Sec. IV, we present our conclu-
sions.

II. THE MODEL AND SHORT-TIME EQUATIONS

We consider a generalized Blume-Capel model, in two
dimensions, of spinss= 3

2, whose states aresi = ± 3
2 , ± 1

2. The
Hamiltonian of the model can be written as

H = − Jo
si,jd

sis j + Do
i=1

N

si
2 − Ho

i=1

N

si , s1d

whereJ.0 is the ferromagnetic exchange interaction,D is
the crystal-field anisotropy,H is a uniform external field, and
N is the total number of spins. The phase diagram of this
model was studied in detail by Plascak and Landau[1],
through Monte Carlo simulations. At theH=0 plane, they
found the second-orderl-transition line and the first-order
coexistence line that ends at a double critical end point. At
this point, two critical phases coexist.

The static and dynamic critical exponents can be deter-
mined from the dynamic relaxation equations when the sys-
tem starts from a completely ordered state, uncorrelated*Email address: wagner@fisica.ufsc.br
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spins, with the order parameter assuming its maximum
value. For the system studied, we employed two different
definitions for the order parameter, depending on which tran-
sition we are looking for. Along thel line, the order param-
eter is the total magnetization of the system, which goes to
zero at the points of this line. On the other hand, for the
double critical end point(DCE), we define the order param-
eter as being the differencemstd=Mstd−Md, whereMstd is
the total magnetization at timet andMd is the magnetization
at the DCE. Also, this latter order parameter becomes zero at
the DCE. We assume that near a point at thel line, or near
the DCE, thekth moment of the corresponding order param-
etermstd scales as[8]

mskdst,t,Ld = b−kb/nmskdsb−zt,b1/nt,b−1Ld, s2d

wheret is the time,t is the reduced temperature

t =
T − Tc

Tc
, s3d

L is a linear dimension of the system, andb is a spatial
rescaling factor.b andn are the well known static exponents
andz is the dynamic critical exponent. This scaling relation
is assumed to be valid in the macroscopic short-time regime.
For example, fork=1 and forb= t1/z, we obtain the scaling
law to the order parameter,

mstd = t−b/nzms1,t1/nztd, s4d

where it is assumed thatL is very large. Ift=0, this scaling
relation can be written as

m, t−c1, s5d

with c1=b /nz. In Eq. (4), taking the derivative ofm with
respect tot and evaluating it att=0, we obtain the logarith-
mic derivative of the order parameter,

U ] ln mst,td
]t

U
t=0

, tc2, s6d

wherec2=1/nz.
Once the order parameter assumes its maximum value at

t=0, we can also obtain the time-dependent second-order
cumulantU2std defined by

U2std =
ms2d

smd2 − 1. s7d

At the initial times it reduces to

U2std , tc3, s8d

where c3=d/z; d is the spatial dimension of the system.
Therefore, from the short-time dynamic evolution of the or-
der parameter and its second moment, we can obtain the
static critical exponentsb and n and the dynamic critical
exponentz along thel line and at the multicritical point
DCE.

III. SIMULATIONS AND RESULTS

We have performed Monte Carlo simulations, with peri-
odic boundary conditions, on a square lattice withN=L2

sites, with values ofL ranging fromL=8 up toL=128. We
have employed the heat bath algorithm to take into account
the transition rate between states. We have started the simu-
lations with a completely ordered state, where all spins as-
sume their maximum value, i.e.,si =

3
2. We have investigated

two different types of critical points. First, we considered the
critical behavior along thel line, where the system passes
continuously from an ordered ferromagnetic to a paramag-
netic phase. The second case we considered is related to the
critical behavior at the double critical end point: at this point,
two critical phases coexist,F+3;F+1 andF−3;F−1. We have
seen that for any critical point considered it is sufficient to
consider the first 300 Monte Carlo steps(MCS; 1MCS=L2

trials to change the value of the spins in the lattice) to cal-
culate the critical exponents of interest. In order to get a
good statistics, we had to consider a large number of inde-
pendent samples to calculate thekmstdl and its second mo-
mentkms2dstdl at the critical points. With the values ofkmstdl
and kms2dstdl, we can determine the second-order cumulant,
kU2stdl, and the logarithmic derivative of the order parameter
with respect tot, uf] ln mst ,td /]tgut=0.

A. The second-order transition line

In order to determine the values of the static and dynamic
critical exponents at thel line, where the system passes con-
tinuously from the ordered ferromagnetic phase to a para-
magnetic phase, we have prepared the system in a com-
pletely ordered state, with all the spins assuming their
maximum value,si = + 3

2. Then, the system is left to evolve
in time at a chosen point of thel line, with coordinatesTc
and Dc. In order to get reliable results, the averages were
estimated by using 43104 samples for the lattices with the
lattice size in the range 8øLø32, and 104 samples for 48
øLø128. For the valueDc=0, the critical temperatureTc
=3.287 94s7d was determined very accurately[10] by em-
ploying a hybrid algorithm to the spin-3

2 two-dimensional
Ising model. We show in the next three figures the results we
have obtained for this critical point. Figure 1 displays the
log-log plot of themstd as a function oft for L=128. The
figure also exhibits the best fit to the data points. From the
slope of this straight line, we found the following ratio for
the critical exponents:b /nz=0.059 72s5d. Similarly, in Fig.
2, we show the log-log plot of the second-order Binder cu-
mulant U2std as a function of t, giving the value d/z
=0.919s2d for the slope of this curve. We found the value
snzd−1=0.4954s7d for the slope of the curve presented in Fig.
3, which is the log-log plot of the logarithmic derivative ofm
versust. From these ratios, we can easily determine the val-
ues of the critical exponents:z=2.176s4d, n=0.928s3d, and
b=0.1206s7d. We have also considered other points on thel
line for which Dc is different from zero. We have employed
the same procedure described above to find the critical ex-
ponents. In Fig. 4, we summarize the results for the three
considered critical exponentsb, n, andz. In this figure, the
dotted lines give the exact values for the static exponentsb
andn for the two-dimensional Ising model, and the one well
accepted estimate[11] for the dynamical exponentz. Despite

B. C. S. GRANDI AND W. FIGUEIREDO PHYSICAL REVIEW E70, 056109(2004)

056109-2



the larger deviation from the dotted lines forD.0, which
can be ascribed to the fact thatTc in these cases have not
been so accurately determined as forD=0, the critical be-
havior along thel line of this model seems to be the same as
that of the Ising model in two dimensions.

B. Double critical end point

Now we turn our attention to the double critical end point
found in the phase diagram of the spin-3

2 Blume-Capel
model. The coordinates of this point was determined very
precisely by Plascak and Landau[1] through Monte Carlo
simulations viaMETROPOLIS sequential single spin-flip up-

FIG. 1. Log-log plot of the order parametermstd vs timet, at the
l line, for Tc=3.287 94s7d, Dc=0, andL=128. The error bars found
in the simulations are less than the size of the points. The straight
line is the best fit to the data, which givesb /nz=0.059 72s5d (the
error is that obtained from the fitting).

FIG. 2. Log-log plot of the second-order Binder cumulantU2std
as a function of timet, at thel line, for Tc=3.287 94s7d, Dc=0, and
L=128. The straight line is the best fit to the data, which gives
d/z=0.919s2d.

FIG. 3. Log-log plot of] ln mst ,td /]t as a function of timet, at
thel line, for Tc=3.287 94s7d, Dc=0, andL=128. The straight line
is the best fit to the data, which givessnzd−1=0.4954s7d.

FIG. 4. The exponentsz, n, andb as a function of the crystal
field parameter, at thel line for L=128. The dotted lines mark
the exact values of the exponentsn and b of the two-dimensional
Ising model, while the dotted line associated withz is the value of
Ref. [11].
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dates, by employing a histogram reweighting and finite-size
scaling techniques. In their analyses, they used square lat-
tices with lattice sizes ranging fromL=12 to L=64. They
found the following values for the coordinates of the double
critical end point:Td=0.593 74s7d andDd=1.986 47s5d. The
values of the magnetization they found for the two largest
lattices are for L=48, Md=0.6285 and forL=64, Md
=0.6313. We show in Figs. 5, 6, and 7, the log-log plots of
mstd, U2std and the logarithmic derivative ofmstd versust,

respectively. For this point, the order parameter ismstd
=Mstd−Md, whereMstd is the total magnetization at timet
and Md is the magnetization at the DCE. In this way, this
order parameter becomes zero at the DCE. We found the
following slopes for these straight lines: forL=48, b /nz
=0.0338s1d, d/z=0.908s3d, and snzd−1=0.557s5d. On the
other hand, forL=64 the slopes areb /nz=0.0342s1d, d/z
=0.922s2d, and snzd−1=0.528s3d. Although we do not have
precise values of the magnetization for larger lattices, it is
easy to see that the ratiob /nz is almost insensitive to thelat-
tice sizes considered. For instance, the critical exponents for
L=64 are z=2.169s5d, n=0.873s8d, and b=0.065s1d. By
considering only these two lattice sizes(L=48 andL=64),
and extrapolating the corresponding critical exponents to an
infinite lattice, we see thatn=1.05, which is near the value
found by Plascak and Landau[1]. However, the value we
estimated forb is 0.077, which is very different from the
expected 0.125 for the two-dimensional Ising model. Based
on these estimates, we believe that the double critical end
point does not belong to the same universality class of the
two-dimensional Ising model.

IV. CONCLUSIONS

In this study, we investigated the critical behavior of the
generalized two-dimensional Blume-Capel model of spin-3

2.
The critical exponents were determined by the short-time
dynamic scaling and Monte Carlo simulations. We have
found that, along the continuous transition line separating the
ferromagnetic and paramagnetic phases, the critical expo-
nents are in the same universality class of the two-
dimensional Ising model. On the other hand, at the double
critical end point, where two critical phases coexist, although

FIG. 5. Log-log plot of the order parametermstd vs timet, at the
double critical end point, whose coordinates areTd=0.593 74s7d
andDd=1.986 47s5d, for L=64. The straight line is the best fit to the
data, which givesb /nz=0.0342s1d.

FIG. 6. Log-log plot of the second-order Binder cumulantU2std
vs time t, at the double critical end point, forL=64. The straight
line is the best fit to the data, which givesd/z=0.922s2d.

FIG. 7. Log-log plot of the] ln mst ,td /]t vs time t, at the
double critical end point, forL=64. The straight line is the best fit
to the data, which givessnzd−1=0.528s3d.
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the static exponentn we obtain is almost the same as deter-
mined previously[1], we estimated for the exponentb, as-
sociated with the order parameter, the valueb=0.077, which
is quite different from the exact 0.125 of the two-
dimensional Ising model. Then, we think the behavior of the
model at the double critical end point is not in the same
universality class of the two-dimensional Ising model. That
is, while at thel line the critical behavior is the same as the
corresponding Ising model, it changes drastically at the
double critical end point. Nevertheless, the dynamic critical

exponentz presents essentially the same value at both thel
line and at the double critical end point.
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